

8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

DESCRIPTION

The TTL/MSI T54LS251/T74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- SCHOTTKY PROCESS FOR HIGH SPEED
- MULTIFUNCTION CAPABILITY
- ON-CHIP SELCT LOGIC DECODING
- INVERTING AND NON-INVERTING 3-STATE OUTPUTS
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN NAMES

S ₀ -S ₂	Select Input
Ē	Output Enable (Active LOW) Input
10-17	Multiplexer Inputs
z	Multiplexer Outputs
Ī	Complementary Multiplexer Output

4/87

388

LOGIC SYMBOL AND LOGIC DIAGRAM (15) (14) (13) (12) (2) S₂ (9) (4) Í (3) (1) S₁ (10) Se (11) Ē. (7) I H 2 1 15 14 13 12 3 h 4 4

(5) (6)

LC-0083

Z Ž

ABSOLUTE MAXIMUM RATINGS

7

5

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	- 0.5 to 7	v	
V _I	Input Voltage, Applied to Input	- 0.5 to 15	v	
V _O Output Voltage, Applied to Output		- 0.6 to 5.5	T v	
II Input Current, Into Inputs		- 30 to 5	mA	
lo	Output Current, Into Outputs	50	mA	

LC-0060

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers				
	Min	Тур	Max	Temperature
T54LS251D2	4.5 V	5.0 V	5.5 V	-55°C to +125°C
T74LS251XX	4.75 V	5.0 V	5.25 V	0°C to +70°C

XX = package type.

389

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8-position switch the swith position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both assertion and negation outputs are provided. The Output Enable input (E_0) is active LOW. When it is activated, the logic function provided a the output is:

$$\begin{split} Z &= \overline{E}_0 \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + \\ &\quad + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet 1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2). \end{split}$$

When the output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-state devices are tied together, all but one, device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Outputs Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

INUIT													
Ē ₀	S ₂	S ₁	S ₀	lo	1 ₁	12	l ₃	I4	l5	16	I ₇	Z	Z
н	x	x	х	X	х	x	x	x	х	х	х	(Z)	(Z)
Ĺ	Ϊ	L	L	L	х	х	х	х	х	х	х	н	L
Ē	Ĺ	L	L	н	х	Х	х	х	х	х	х	L	н
Ē	L	L	н	х	L	х	х	х	х	х	х	н	L
L	L	Ľ	н	x	н	х	х	х	х	х	х	L	н
L	L	н	L	X I	х	L	х	х	х	х	х) н	L
L	L	н	L	x	х	н	х	х	х	х	х	L	н
L	Ē	н	н	X I	х	х	L	х	х	х	х	Н	L
Ē	I L	н	н	x	х	х	н	х	х	х	х	L	н
E.	н	L	L	X	х	х	х	L	х	х	х	н	L
Ē	н	L	L	x	х	х	х	н	х	х	х	L	н
Ē	н	L	н	x	х	х	х	х	L	х	х	н	L
Ē	H	L	н	x	х	х	х	х	н	х	х	L	н
Ē	н	н	L	x	х	х	х	х	х	L	х	H	L
Ē	н	н	L	x	х	х	х	х	х	н	х	L	н
Ē	н	н	н	х	х	х	х	х	х	х	L	н	L
L	H	н	н	X	х	х	х	х	х	х	н	L	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

(Z) = High Impedance (Off)

Symbol	Parameter		Limits			Test Conditions	Units	
			Min.	Min. Typ. Max		(Note 1)		
V _{IH}			2.0			Guaranteed input HIGH Voltage for all Inputs		
VIL	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage		
		74			0.8	for all Inputs		
V _{CD}	Input Clamp Diode Vo	Itage		- 0.65	- 1.5	$V_{CC} = MIN, I_{IN} = -18mA$	v	
V _{OH}	Output HIGH Voltage	54	2.4	3.4		$V_{OH} = -1.0$ MA $V_{CC} = MIN, V_{IN} = V_{IH}$ or	•	
		74	2.4	3.4		IOH = -2.6mA VIL per Truth Table	V	
VOL	Output LOW Voltage	54,74		0.25	0.4	$I_{OL} = 4.0 \text{mA}$ $V_{CC} = \text{MIN}, V_{IN} = V_{IH} \text{ or}$		
		74		0.35	0.5	I _{OL} = 8.0mA V _{IL} per Truth Table	V	
огн	Output Off Current HIGH				20	$V_{CC} = MAX, V_{OUT} = 2.7V, V_{E} = 2.0V$	μΑ	
IOZL	Output Off Current LOW				- 20	$V_{CC} = MAX, V_{OUT} = 0.4V, V_{E} = 2.0V$	μA	
ш	Input HIGH Current			1.0	20 0.1	$V_{CC} = MAX, V_{IN} = 2.7V$ $V_{CC} = MAX, V_{IN} = 7.0V$		
I _{IL}	Input LOW Current				- 0.4	V _{CC} = MAX, V _{IN} = 0.4V	mA	
los	Output Short Circuit Current (Note 2)		- 20		- 100	V _{CC} = MAX, V _{OUT} = 0V		
lcc	Power Supply Current Outputs LOW Outputs Off			6.0 7.0	10 12	$V_{CC} = MAX, V_{OUT} = 4.5V, V_{\overline{E}} = 0V$ $V_{CC} = MAX, V_{OUT} = 4.5V, V_{\overline{E}} = 4.5V$	mA	

OLIAD

AC CHARACTERISTICS: $(T_A = 25^{\circ}C)$

Symbol ^t PLH ^t PHL	Parameter				_		
	Parameter	Min.	Тур.	Max.	Test	Units	
	Propagation Delay, Select to \overline{Z} Output		20 21	33 33	Fig. 1		ns
t _{PLH} t _{PHL}	Propagation Delay, Select to Z Output		28 28	45 45	Fig. 2		ns
t _{PLH} t _{PHL}	Propagation Delay, Data to Z Output		10 9.0	15 15	Fig. 1	V _{CC} = 5.0V	ns
^t PLH ^t PHL	Propagation Delay, Data to Z Output		17 18	28 28	Fig. 1	$C_L = 15pF$	ns
t _{PZH} t _{PZL}	Output Enable Time to Z Output		17 24	27 40	Figs. 4,5		ns
t _{PZH} t _{PZL}	Output Enable Time to Z Output		30 26	45 40	Figs. 3,5		ns
t _{PHZ} t _{PLZ}	Output Disable Time to Z Output		37 15	55 25	Figs. 3,5		ns
t _{PHZ} t _{PLZ}	Output Disable Time to Z Output		30 15	45 25	Figs. 4,5	$V_{CC} = 5.0V$ $C_L = 5pF$	ns

Notes:

1) Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions. 2) Not more than one output should be shorted at a time. 3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

3-STATE AC WAVEFORMS AC LOAD CIRCUIT

392